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Non-equilibrium Green function theory is formulated to meet the three main challenges of high bias
quantum device modeling: self-consistent charging, incoherent and inelastic scattering, and band
structure. The theory is written in a general localized orbital basis using the example of the zinc
blende lattice. A Dyson equation treatment of the open system boundaries results in a tunneling
formula with a generalized Fisher-Lee form for the transmission coefficient that treats injection from
emitter continuum states and emitter quasi-bound states on an equal footing. Scattering is then
included. Self-energies which include the effects of polar optical phonons, acoustic phonons, alloy
fluctuations, interface roughness, and ionized dopants are derived. Interface roughness is modeled as
a layer of alloy in which the cations of a given type cluster into islands. Two different treatments
of scattering; self-consistent Born and multiple sequential scattering are formulated, described, and
analyzed for numerical tractability. The relationship between the self-consistent Born and multiple
sequential scattering algorithms is described, and the convergence properties of the multiple
sequential scattering algorithm are numerically demonstrated by comparing with self-consistent
Born calculations. ©1997 American Institute of Physids$S0021-897¢97)00411-§

I. INTRODUCTION 13-16. In Refs. 14 and 17, the boundary conditions are used
in sp’s* calculations.

The design of resonant tunneling based quantum devices While our treatment of the contacts is useful when
requires accurate modeling of the quantum charge, resonamiplemented as a coherent tunneling device simulator, it be-
levels, and scattering effects in complicated and varied pocomes crucial when we include scattering. The theory allows
tential profiles made possible by hetero-epitaxial based bangs to partition a long structure into two large reservoirs and a
engineering. The modeling of such structures poses comshort device. The computational and memory intensive cal-
bined theoretical and numerical challenges. The two greagulations required to include scattering are then performed
theoretical challenges are to include band-structure and scagnly within the short device region. This application was the
tering effects. What makes the theory particularly challengreason for developing the novel treatment of the boundaries.
ing is that it must be formulated to be nUmerically traCtableNumerica| examp|es of this app”cation are given in Refs.
for the simulation of realistic quantum devices. To make13_16 and in SedVIl).
clear what we mean by a realistic dEVice, we refer the reader Screened po|ar Optica| phonon Scattering, acoustic pho_
to Figs. (1) and(2) of Ref. 1. Because of the length of the non scattering, alloy scattering, interface roughness scatter-
devices and the extreme thermalization combined with thqhg’ and ionized dopant scattering are treated in Born-type
guantum structure in the emitters, such devices cannot b&pproximations. The self-consistent BG®CB) approxima-
modeled well by the standard tunneling approatfies the  tion and the single-electron approximation within the self-
approaches for including scattering; see, for example, Ref$gnsistent Born approximation are described in $ét. We
3—7 and citations therein. show in Secs(V B) and (V C) that for incoherent elastic

The ability to model extended devices required a novekcattering or for inelastic scattering in the one electron ap-
application of the theory developed by Caretial® for in- roximation, the self-consistent Born treatment leads to an
cluding the effects of the contacts. We refer to our use of th¢nfinite continued fraction expansion of the retarded Green
theory as a generalized treatment of the open system bounginction and a power series expansior@®f. For reasons of
aries which is described briefly in Refs. 1 and 9-11 and imyymerical tractability, we then consider finite order treat-
full detail in Sec.(IV). Our approach allows one to treat ments of scattering.
large regions of the structure as emitter and collector reser- \ye describe an approach based on a truncation of the
voirs even when there are spatially varying potentials inseff-consistent Born expansions which conserves current.
these regionsSec.(IV B) incorporates the theory into a stan- The truncation leads to a Green function version of a mul-
dard coherent tunneling simulafdlnaking such a simulator tiple sequential scatteringViSS) algorithme in Sec. (VI).
much more versatile. It provides a simple, tractable solutionrne first order truncation leads to expressions for the self-
to the problems considered by Frenslegnd Fiig and energy and current identical to ones written down by Roblin
Jauho'® Numerical examples of the boundary conditions znd Liou® The MSS approximation is not without its own
used in single band calculations are given in Refs. 1, 11, angrawbacks; it violates detailed balance in equilibrium, but it
consistently appears to give reasonable results for high-bias
dElectronic mail:r-lake@ti.com simulations. We then describe both MSS and self-consistent
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Born treatments of the elastic scattering mechanisms CO”]C,L,R{‘}. An orbital of the corresponding anion at position
bined with first order treatments of the polar optical phononrL +y is la,L,Rt). The indicesa andc run over the set of
scattering in SedVl1). . _ orbitals(and, in the presence of spin orbit coupling, over the
Self-energy expressions for screened polar optical phosping. For example, in thesp® model there are & and 3
non scattering, acoustic phonon scattering, alloy scattering orbitals neglecting spin. From the localized orbital basis,

interface roughness scattering, and ionized dopant scatterirgnstruct transversk states corresponding to Bloch sums
are derived in Appendix A. We take a fresh look at interfacegyer the transverse plane.

roughness and model it as a layer of alloy in which the cation

species of a given type cluster into islands. The model 1 k. R L

smoothly approaches the usual alloy model as the clustering |C:L.K)= N 2:4 e e, L,Rp), ©)
becomes a homogeneous mixture of the two cation species. Ry

This does not appear to be the case for most models found in

the literature, e.g., Ref. 7, except for the work of Titgal 18 la,L k)= i
Interface roughness self energies are calculated for both ' JN R
Gaussian and exponential autocorrelation models. Numerical

examples comparing the different interface roughness modVote thatk is, and will remain throughout the rest of the
els are given in Ref. 15. Numerical examples showing thearticle, a purelytransversewave vector. In our nomencla-
effect of polar optical phonon scattering and interface roughture,longitudinalrepresents the direction of current flow and
ness scattering on the valley current of a resonant tunnelintyansverserepresents the direction perpendicular to current

f L
e (RitV[a, L Ry). ()

diode (RTD) are given in Refs. 14-16. flow. The field operator in this basis is
Il. HAMILTONIAN AND BASIS w(n)=2 | 2 (rle,LK)Ce it 2 (rlal,k)ca k|,
k,L [9 a
The general form of the Hamiltonian is shown in E#). (5)

whereH, contains the kinetic energy and the effects of the _ ) )
band structure, the applied potential, and the Hartree potefYNereé Ca L is the destruction operator for an electron in
tial. The five terms to the right represent the potential felt byState|a,L.k) and cc  is the destruction operator for an
the electrons due to polar optical phonons, acoustic phonon§lectron in statec,L k). _
interface roughness, alloy disorder, and ionized dopants, re- 1he matrix elements dfl, are, in general,
spectively. The underbrace aidindicate that these terms P e\ —
will be included through self-energies shown in Appendix A. (L klHola,L'K) =D ars (k) 31

—to Lo, L(K) Oy L +jr0- (6)

H=H,tH,,,+H, .+ HytHy+Hy The diagonal block contains the orbital energies, the electro-
. static potential, and the anion-cation matrix elemeHtg.of
3 1 Eq. (2) is partitioned such that layers.1,. ,N spanH? and
L

correspond to the device, layerse, ...,0 spanH,;, and
layersN+1,... spaanf. We will refer to block matrix
notation in which the orbital indices are suppressed and the

H, is broken down into five terms,

H0=HE+H5+H§+H’;D+H§D elements such af |, are mxXm matrices wheram is the
-~ - number of orbitalanion plus cation We will also refer to
s B full matrix notation in which all indices are suppressed and

(20 matrices are the size ®13 .

which represent the Hamiltonian of the device, the left con-  There are two special cases that have been heavily stud-
tact, the right contact, the coupling of the left contact to theied, the tight-binding single-baftf and sp®s* models!®?°
device, and the coupling of the right contact to the deviceJn the sp®s* model with transport in th¢100) direction, a
respectively. The under brace indicates that the effects of theation orbital only has matrix elements between itself and
contacts on the device will also be taken into accounbther anion orbitalgand vice versa for an anion orbial
through a self-energys.B. The self-energy treatment of the H, is block tri-diagonal with the blocks being half the size of
scattering Hamiltonians is perturbative. The self-energythe layer basis, i.e., 85 instead of 1& 10. The diagonal
treatment of the contacts is exact. blocks are themselves diagonal in the absence of spin orbit

For zinc-blende compounds, a layer contains both aoupling?
layer of cations and a layer of anions. An example is GaAs In the single-band tight-binding model, there is only one
where the cations and anions are, respectively, Ga and As. érbital per layer(the anion and cation are lumped into a
vectorR", pointing to a cation in layer L hasacomponent  single orbita). The layer uniquely specifies the orbital so that
LA and a transverse componeRf where A is the layer all orbital indices can be dropped from E48-6) and any
spacing(half the width of the conventional cubic cellThe  term containing anion indices in Eq8-5) is discarded. The
anions in the anion plane are shifted in position from thesingle-band tight-binding matrix elements idf, are related
cations in the neighboring cation plane by the lattice vectoto the discretized effective mass Hamiltonian in the usual
v=35(111). A localized cation orbital at positioR" is  way?? The effective mass Hamiltonian is
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-#2d 1 d #2k? We are concerned with steady state, so we Fourier trans-

Ho= =Gz m* (2 dz Vk@)*‘m, (1) form the time difference coordinatef£t’), to energy in
Egs. (12 and work with, for example, the quantity
% . . H ’
wherem{ is the effective mass in the left lead and GEYLYQ,VL,(k'E)=fd(t—t’)e'E(H )’ﬁGiL;a,‘L,(k't—t’).
A2Kk2[ m¥ Several useful relationships that apply to the Fourier
Vv " . i :
Vi(2)=V(z)+ e (m "2 ) (8)  transformed quantities aen full matrix notation
A_rcRyt

Note that the spatial dependence of the transverse energy has G"=[G"T, (13)
bee_n transferred into a transverse momentum (_jependent PO- A=i[GR-GA]=A". (14)
tential, and that we have assumed a parab@fistead of
cosing transverse dispersion. Fourier transforming the definition @R in Eq. (12) results

The tight-binding parameters in E() corresponding to in
the finite difference form of Eq.7) are

R dE’ A(K;E') i
o w GR(k,E)= Pf 5 E-g 2 AKE). (19
B0 (a7’ ©

The relationships between the various self-energies that

n? 1 1 we will discuss are identical to the relationships between the
Di(k)= W(m_+ m* | Vi), (10 Jarious Green functions. A few that we will use are
m_,+m, m; + m; I'(k;E)=i[27(K;E)—2<(k;E
—_ 12 i and m* = i 5 |+1' (11) ( ) [ ( ) ( )]
=i[2R(k;E)=2AK;E)] (16)

where in Eqs(9-11 m, is the effective mass at mesh site

“i”, Vi(k) is the potential at site “i” due to conduction and

band offsets, the applied potential, the Hartree potential and dE’' I'(K;E') i

the transverse momentum dependent pai,gf), andA is R(k,E)= J - E—g 2l (KE). 17

the mesh spacing.
B. Electron density and current

IIl. NON-EQUILIBRIUM GREEN FUNCTIONS Once _the correlation functiof_f:< is known, it immedi-
ately provides the electron density,

A. Definitions

S . . . E
The non-equilibrium Green function formalism provides E f d 2 e aLal(kE)

a method for calculating the non-equilibrium statistical en-
semble average of the single particle correlation operators, _2|
) i AL > f t{GL(k.E)} (18
GaYL;a,'L,(k;t,t')= %(Calelvk(t’)ca,L,k(t»
and the current density,

2]2772

a' L=

G, .. (kitit)= z <CaLk(t)C )

2>L [ta,Ll;a’,Lz

GS‘L;‘Y,’L,(k;t’t ) ®(t t )[GaL al, L’(k’t't ) <
XGauLz:a,LJk’E) alyia 1,8 Ly, (K E)]

_Gi,L;a',L'(k;t’t,)]

=—i0(t—-t’ Aa cal L' k,t,t’ . <.
) (t=t)Aq Lo L (Kit,t) 2 f > Ll A > 2Rt .1 ,Gr . (KE)]
' ’ < . ’
G, Lo (KL =0 =[G, .,/ (Kt,t") (19
-g> Lo (Kt E)] throughout the devicel, is the current crossing the plane
o between layet andL+1. In Egs.(18) and (19), A is the
AgLar (Kt t)=i [Ga‘L;a,’L,(k;t,t’) cross sectional area, ards the electron charge. The factors
_ of 2 are for spin degeneracy. In the absence of spin degen-
=G, Lo (Ktt)] eracy, the trace is also taken over spins. In the second line of
. ~R Kot Egs.(18) and (19), we use block matrix notation fdr and
=G, Lo (L) G~ and t{- - -} indicates a trace over the orbital indices. In
—G’; L (k)] 12 the nearest neighbor tight-binding models,

P ’ ; ; 2e dE
\(/)vrfg)(iet;elsthe indicesr anda’ include both the anion and cation = 2 J' ——2REtt, L+1Gf+1-L(k E)]}. (20
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| The theory is illustrated by Fidl). The effect of the left
[ and right regions are collapsed into the self ener§ig$and
TS| Tl g<n 3<B. 3R® accounts for the spectrum shift and loss in the
. ! device resulting from the coupling of the device to the con-
z L-» tacts.> =B accounts for the inscattering from the contacts to
the device.

For completeness, we derive the expressions for the
boundary self-energies below. We first include exactly the
effects of the contacts on the device using Dyson’s equation,

Collector then, in the following sections, we include the effects of
Right | scattering in the device. We consider Dyson’s equation for
Reservoir < . . . . .

G™ since it will give us the self-energies which account for
both the dynamics and the kinetics of the leads. To avoid
n* contact excessive subscripts and summations, we derive the equa-

tions for the nearest neighbor tight-binding model, and, at the
FIG_. 1. The structure is partitioned into two large reserv_oirs and a shorend, write down the answers for the general multi-neighbor
device. The self-energ}R® accounts fo_r I_oss_ from the device to the con- coupling models. Unless stated otherwise, block matrix no-
tacts. The self-energy¥, < accounts for injection from the contacts to the . . 2
device. tation will be used throughout. All subscripts refer to layer
indices. We calculat& < in the device by including the cou-
pling of the contacts to the devicéy;, t1o, tyn+1, @nd

L : tn+1n, €xactly using Dyson’s equation. The derivation for
One should keep in mind that the goal of all of the dlfferentG> is identical and obtained by replacing the superscript

approaches that we discuss in the following sections is the< with > and the Fermi factore, With 1 fe in the

calculation of Eqs(18) and (19). following equations. For any two layersj € {1,... N} in
the device, the Dyson equation f@fj(k,E) is (cf. Eq.
(2.25 of Langret®)

Reservoir

Fy

nt contact

|
|
|
Left |
!
|

Emitter

Fy

IV. SINGLE ELECTRON TUNNELING THEORY

A. Generalized open system boundary conditions

In this section, we describe how to partition the deviceSii~ 91 T 9~ 10 Goj+9ix(— 11,0 Gy

_such that I_arge regions, even where there_ are spatially vary- +giF?N(_tN,N+1)G§+1,j+ng(_tN,N+l)GQ+1,j , (2D
ing potentials, can be treated as reservoirs. We have found
this development to be the single most important and useful
feature of the theory presented in this article. The approach ighere the argumentsk(E) have been suppressed. In Eq.
based on the Dyson equation treatment of the contacts deveRl), the lower caseg’'s are calculated with the device-
oped by Caroliet al® and subsequently used by a number ofcontact couplingstg 1, t10, tyn+1, @ndty, gy S€t to zero,
authorst®23-28 and the upper cas8’s are exact. The middle term of Lan-
The novelty of our approach is twofold. The first is the greth’s Eq.(2.25 is zero since thé’s are local in time(see
manner in which we apply the theory. All previous applica- Appendix of Caroliet al®). The full Green functions which
tions of the theory injected carriers only from the flatbandcross the device-contact boundari@tsjj , Gns 1 Gé,j , and
regions of the contacts. See, for example, appendix B anﬁiﬁHJ are obtained by writing a second Dyson equation,
Fig. (4) of Ref. 19. In contrast, we use the theory to treat
large regions of the structure, even where there are spatially
varying potentials, as reserviors. Thus, we are capable of G§j=9§,o(—to,1)G1<,j+9§,o(_to,1)G/f,j
injecting electrons into the device from mixed, non-
asymptotic states in the emittésee Figs(1) and(2) of Ref.
1). This is in contrast to standard scattering theory, and itis ~ Gn+1;= 9N+ 1n+1(—tn+1n)CR |
the reason that the problem of injection from emitter quasi- tos (—t )GA 22)
bound states was never properly formulated without this NFLN+IL INFLNTEN
theory!? Our approach is also the key which allows us to
include scattering in long devices. and
The second novelty is our small but essential modifica-
tion of the original theory to include an imaginary potential
in the contacts. This potential plays the role of the imaginary Gé,j :gé,o(—to,l) G/f,j
part of the retarded self-energy in the contacts resulting from
scattering. For injection into the device from plane-wave
_stat_es, the effec_t of the imaginary potential is smqll. For in- Gﬁu,j=gﬁ+1,N+1(—tN+1,N)Gﬁ,j ) (23
jection from emitter states that lie below the continuum on
the left(see Fig(1)), the imaginary potential is crucial. This
is discussed and illustrated numerically in Ref. 11. Substituting Eqs(22) and (23) into Eq. (21) results in
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<_ <, R, R <, R < A
G =81 8i1110800001G 11 8i111.0800701C1

———— ——r
RB <B
200 T4
< A A
+8i171,080,000,1071;
——r
AB

1,1

T 8intN N+ 18N+ 1IN+ 1Ev+ 14Oy, terms

o
(24

From Eq.(24), we read off the boundary self-energies which
take into account the effect of the semi-infinite left and right

contacts on the device.
S80=t, 6 do.
Eﬁﬁ\l:tN,N+lgﬁ+l,N+1tN+1,N
S4%=t, o do

2ﬁfBNztN,N+19Q+1,N+1tN+1,N (25

and
21<,1B:t1,ogg,oto,1
S AN N 19N 1 N N (26)
Since the contacts are by definition in equilibrium,
g§o=ife Q0,0
g§+1,N+1:ifCaN+l,N+la 27

wherea=i(gR—g") is the spectral function anfl is the
Fermi factor of the emittetcollectoy contact. Definingl™®
as

rf=i (2??_ 2?,? =1t1,080,0t0,1

FE,N:i(EEE\I_EQ,BN):tN,N+laN+1,N+1tN+1,N (28)
we obtain the final form foB, <.

E1<,lBZ ifer?,l

SNR=ifl R N1 (29)

In the nearest neighbor tight-binding model, all of the bound

ary self-energies are zero for laydisj} # {1,1 or {N,N}.

While the self-energie& R® andI'® are valid in general, the
self-energy> =8, Eq. (29), is valid only if the reservoir re-
gions are well equilibrated with the*ncontacts(see Fig.

1).

To obtain the equation of motion fonj for i,j
e {1,... N}, we operate on Eq(24) from the left with
(E—HY) using E—H2)gR=1 and E—HY)g==0 to ob-
tain (in full matrix notation

(E—Hg—2R®G==3<BGA, (30)
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where E—HP) is an NXN block tridiagonal matrix and
>RB and 3 =B are NX N block matrices with two non-zero
blocks, one in the upper left corner and one in the lower right
corner.

The matrix on the left of5< is GR_l, so from Eq.(30)
we also get the equation of motion for the retarded Green
function in the devicdin full matrix notation,

(E-H2-3RB)GR=1 (3D

Derivations of3 RB using the more commonly known Dyson
equation forGR can be found in Refs. 10 and 30.

An explicit representation of the retarded Green function
for any layer{i,j} e {1,... N} is thus(for N=3),

E-D,;—3TF  ti, 0 !
[GR]= tio E-D; to3
O t3‘2 E_Dg_zgg
(32

In general, the contact regions will be regions with spatially
varying potentials where it is appropriate to approximate the
occupation factor with an equilibrium Fermi-Dirac factor.
An example is the lightly doped emitter lead and resulting
emitter quasi-bound state of a resonant tunneling didde.
This region can be 200 nm long. If a lattice spacing of
2.83 Ais used, 700 nodes would be required for this region.
By including its effect through a self-energy, the sikk,of
the matrix,HY , is reduced by 700. Once we include scatter-
ing, computation time scales & for local interactions and
N® for non-local interactions, this reduction therefore be-
comes essential.

To calculate the self-energi&st? and3 55 in Eq. (32,
we needgg, and gi,. Taking, for example, a left contact
consisting of three layers with indicgs={—2,—1,0} and
assuming that the potential at laygrs3,...,—x} is iden-
tical to that at layer- 2, g&o is found from

E-D_,—3R3 , t, o 1
Joo= 12 E-D_; t.ip :
0 to-1  E-Doly,
(33
where
SRS o=t p 3gRs at3 > (34)

and 953,,3 is the surface Green function of the semi-infinite
bulk terminated at layet-3, i.e., the semi-infinite bulk con-

sisting of layers{—o-..—3}. For nearest neighbor tight-

binding models the surface Green functiotfis

g% s=[E-D_g+t g4 _axZx " (35)
and the boundary self energy is

SRE =t oxZx 1 (36)

where Z is the diagonal matrix of propagation factors and
x is the matrix of Bloch states propagating toward the de-
vice.

For the single-band model, thés are real scalars which
we denote as, in the left lead so that
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953’_3= —el7eht, (37)  B. Current
1. Tunneling formula

Starting with the expression fdg, Eq. (19), using Dys-
253,722_% glred, (38 on’s equation forGed, which crosses the device emitter-
contact boundary where the subscripindicates a layer in
wherey, is the longitudinal wave vector in the emitter con- the emitter contactto the lef) and the subscripd indicates
tact. Using the single-band dispersion relation a layer in the devicgin block matrix notatiol,

and

E=D_,—2t, COg ye A) @9 s,= 2 [Gae(—tera)Ggr gt 00 e (—tera)Ch 4] (44)

the upper left corner element of the matrix in E§3) be-
comes—t, e~ 7ed, and the fact tha0‘3de —[Gq, <4l, we can rewrite the current

True bound states may be present in the spectrum dEd. (19) to obtain Eq (5) of Meir and Wingreerf/
gO’0 andgNH’N+1 occurring in Eqs(25—29 since the matrix

2e
elementsty; andty n+1 are set to zergsee Eq.(33). To ‘]Ozﬂ > 2 2 tr{rL L,[f AL L+|GL, b
give a realistic energy width to these states, an energy de- TL=117=1
pendent optical potential,», is added to the diagonal ele- (45)

ments ofD; in the leads in matrix33). The optical potential As they noted, Eq(45) is valid even when scattering pro-

is given an exponential decay for energies below the conduaeesses and many-body interactions are present in the device.
tion band edge to avoid unrealistic band tails. Physically, theVith no scattering in the device, E@5) can be re-written
optical potential represents the scattering induced broadems a generalized Fisher-Lee tunneling formidlalsing the

ing; if an emitter quasi-bound state is to act as a reservoir, itelations(in full matrix notation,

must be coupled to the continuum of states to the left through

Ry <BrA
inelastic channels, and the coupling to the continuum must =G"2™"G (46)
be greater than the coupling to the states to the right througand
the emitter barrier. The optical potential is an approximation — GRrBGA (47)

for the imaginary part of the retarded self-energy resulting
from scattering in the reservoirs. The optical potential is non£Eqg. (45) becomes

zero only ir_1 the reservoirs and_zero in the device. Th(_erefore, N N N
;ne:\tleed.dewce, where -current -|s calculated., current is con- E f TR Z z: z:
In general, for arbitrary neighbor coupling, xtr{FEe |_2G|_2 |_3FE3R|_4 L4,Ll}(fe—fc)- “8
EEL?L’:HEO |_22\o L,ngfl'th,_Z,,_,, (400  For the smgle-band model, E¢8) becomes
23 [GortrEieiite . w9

ECRLBL':L 2N+1 L >2N+l t""‘lgfly'-zt'-zvl-" (41)
- 3 Defining T{-- -} as being the trace over all device states,

where we have used block matrix notation. The subscript&d- (48) can be written as

e andc label the self-energies resulting from coupling to the

emitter and collector contacts, respectively. The number of J= 2 f Tr{FBeGRFBCGA} fo—fo), (50)
terms in the sums is determined by the number of non-zero

off-diagonal block matrix elements id,. The terr‘ngL L, is  where we are using full matrix notation exactly as written by

calculated with all matrix elements coupling the lead to theMeir and Wingreeri” The difference is that ouf's contain
device set to zerol'® resulting from coupling to thelefty  the effects of band bending and quantized states in the leads.

right) contact is defined as Eq. (50) is the tunneling formula with a generalized Fisher-
Lee form of the transmission coefficietftFor the first time,
rBeEe=is /2 —[Shn 1M (420 current flowing from continuum states and current flowing

_ _ _ from emitter quasi-bound states is treated on an equal footing
> =B resulting from coupling to théemitter/collectoy con- i a Tsu-Esaki-type tunnelidgformulal?
tact is given by

<B _ . B(elc) 2. A numerically more efficient tunneling formula
2 (eie) = (et ' (43 . o .
Although Eq.(50) is formally pleasing, it is numerically

The central equations of this section are the expressionsefficient since it requires the calculation of the far off-
for the self-energies which account for both the dynamicsgdiagonal elements oGR. The most efficient formulation
Egs. (25), (28), (40), (41), and (42), and the kinetics, Egs. would require only the corner diagonal elementszt We
(29 and(493), of the contacts and the equations of motion forcan rewrite Eq.(50) to satisfy this requirement. Using the
G=, Eqg. (30, andGR, Eq. (31). expression foA (in full matrix notatior
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A=GRI'BeGA+ GRI'BeGA (51)
the transmission probability in E¢50) can be written as
T(k,E)=Tr{I'B{A— GRI'BeG*]}. (52

Since, in Eq.(52) the Green functions only couple 1P,

recursive Green function algorithm described in the next
subsection provides an extremely efficient means for obtain-
ing all of the information necessary for calculating the elec-
tron density and the current.

only the left corner elements are needed. As an example, f@5 Recursive Green function algorithm

nearest neighbor tight bindingn block matrix notatiop,

2e dE
=7 ; fEtr{r?i[Al,l_G?,lF?EG'lL\,JJ}(fe_fC) (53
only the first diagonal block is needef{ is obtained from

Eq. (14)). For a typical recursive Green function algorithm,
Eq. (53) can be twice as fast as E@8).

C. Electron density

The recursive Green function algorithm is most powerful
for the nearest neighbor tight-binding model. We will limit
our discussion to that example in this section. For next
nearest-neighbor models, one can use all of the equations as
stated by simply doubling the block size.

In the following derivation, all upper casg’s and lower
caseg’s are retarded Green functions and hence we will drop
the superscripR. Upper cas&s’s are reserved for the exact
Green function elements. The tergiL indicates that the
Green function takes into account everything exactly on the

The approach just described to speed up the current caleft with the coupling elements immediately on the right,
culation can also be used to speed up the calculation of thg ., andt, .;, , set to zero. The terrg| | indicates that
electron density when no scattering is present in the deviceghe Green function takes into account everything on the right

To calculate the electron density from HG8), we need
—iG = 2 [fe GF L TEr G,
’ L1~|—2 =1 1:=2 2

+ chELlrEf,LZG{:\Z,L] : (54)

exactly with the coupling elements immediately to the left,
t, .-, andt _y , setto zero.

To calculate the electron density, we need the diagonal
and left block column o6GR for Eqgs.(56) and(57). We start
with the expression fog" in the flatband lead, see E5),
and, using the expression for the open system boundary self-

For the simplest case of nearest neighbor tight binding, Ecenergy, Eq.(25), walk from right to left across the device

(54) requires both the left and right block columns @F.
We can rewrite Eq(54) so that only the block diagonal
elements and lefor right block columns are needed. In the

creatinggy | :

Ol =[E=Dpy—t 4100 y10satira ] & (59

recursive Green function algorithm, this change can reduc@t the left end of the left leadsay layer 0), we havga0

the calculations by a factor of 2.
To aquire the left block columns, we define

AlL=2 GE.TP GP . (595
T b1 Rz TR
Eq. (54) then becomes
_iGL<,L:feA|fL+fc[AL,L_A|fL . (56)

Eq. (56) requires only the block diagonal elementsGst and
the elements which couple to the left contact throwdif.
As an example, for nearest neighbor tight binding,

7 _ ~R pBerA
AL,L_ GL,lFl,lGl,L '

(57)

from Eq. (350 and we create the exact diagonal block
G}, from
G11=[E—D1—t; g o1~ t1 G521l " (60)

If we only needed the current, E3), we would stop here.
With G, ;, we march back across the device creatig,
using

(61)

which is derived by combining the Dyson equation for
GL,L!

GLi=9L, 9 tii-1G -1 —1ti-1.90 L.

GLi=0r 90 (—tLi—1)Gi-1y1, (62)

In this example, only the diagonal blocks and the left blockwith the alternate form of the Dyson equation f8f | ,

column of GR are needed.

Once the device is under sufficiently high bias such that

GLo1 =G —1(—ti—1)0, - (63

at higher energie$g can be neglected, one only needs theFinally, we walk down the left column creatir@, , using

left column of GR. This can be obtained from one sweep
from right to left across the device with the recursive Green

function algorithm, Eq(59), followed by a walk down the
left column.

GLi=0L . (—tL -G 11 (64)

V. SELF-CONSISTENT BORN EQUATIONS OF
MOTION AND SOLUTION

Since the contacts are in equilibrium, we calculate

GEL in the contacts using the equilibrium relation
_iGL<,L:fAL,L’ (58)

wheref is the Fermi factor of the contact a®R is the exact
Green function of theonnectedead. Therefore, in the con-
tacts, we need to calculate the diagonal elemen@fThe
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In the previous section, we used Dyson’'s equation to
include exactly the effect of the contact Hamiltonians in Eq.
(2). We now use perturbation theory to include approxi-
mately the effects of the scattering potentials in Bg. The
derivation of the self-energies in a self-consistent Born ap-
proximation is given in SedA).
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The equations of motion foBR and G= which include tering. Therefore, for incoherent elastic processes, single
the effects of incoherent scattering dpe full matrix nota-  electron theory? and non-equilibrium Green function theory
tion) are identical.

For the inelastic self-energy resulting from polar optical

(E-H,—3R-3RB)GR=1 (65  Pphonons, there is no simple relationship such as(&9). by

which one can calculatgR from GR. SR andI" do depend
and on the occupation statistics which are containedsin and
G~. To calculatez R for polar optical phonons, one is forced

(E—Hy—3R-3RB)G==(2~+3<B)GA, (66)  to perform the principal value integral in E¢L7) numeri-

cally. That is a daunting task that we wish to avoid. In Sec.

R_sR R R R R _ <
whe<re2 <_zpo<p+2ap+2ir+2al+zid and _2_<—E§Op+23p_ (V C), we discuss how to approximate the principal value
+3;+3 5+ are the sum of the individual scattering integral analytically.

self-energies for each type of scattering process: polar optical

phonon, acoustic phonon, alloy disorder, interface rough-

ness, and ionized dopartR® and3 =B are the open system _ .
boundary self-energies. If we multiply E@6) by GRonthe B Elastic scattering

left, we obtain Eq(17) of Caroli et al** First, we discuss the solution of Eq&5) and (66) if
We note that in the self-consistent Born approximationonly elastic scattering mechanisms are present so that

and, also, for the single-electron approximation within thesR=s R SR sR+sRands <=3 +3-+35+3R. For

self-consistent Born approximation that we discuss in Seconly elastic self-energies, the two Eq$5) and (66) de-

(V C), current is conserved. FoB~ calculated from Eq. couple. First, we perform a self-consistent solution G

(66), the divergence of the current is and 2R Then we self-consistently solve f@~ and > ~.
Furthermore, and perhaps more importantly, each total en-

_ 2e dE  he <A ~Re< ergy decouples from the others, so that we perform the com-
‘]L_JLfl_ﬁ Ek: J'Ztr[z G=+2°G"-G™X plete self-consistent calculations one energy at a time and
then move on to the next energy. The energy decoupling

—-G=34]=0, (67)  reduces memory requirements.

The self-consistent solutioBR and3R generates a con-
tinued fraction expansion which converges very fast. The
A. Retarded self-energy, XF self-consistent solution o6~ and 3= generates a power
series expansion which converges very slowly. All of the

The retarded self-energy,R, is related to> =~ and>~ ; .
by Eq. (17). For the elastic self-energies due to acousticﬁffet'ihzeflgregerg'es’ Eq#Al3), (A23), (A29), and (A40)

phonons in the high temperature approximation, alloy scat-
tering, interface roughness, and ionized dopants, the retarded
self-energies are obtained from the expressionsforin

Egs. (A13), (A23), (A29), and (A40) in Appendix A, by  and
simply replacingG= with GR. We illustrate this with the
example of acoustic phonon scatterifig full matrix nota- S<=D®G<, (71)
tion).

where the notatioXG=2, .3 | /G, .

SR=pD®GR (70)

whereD contains the matrix element squared of the scatter-
['(E)=i(27(E)-3<(E)) ing potential and® indicates convolution over transverse
momentum and matrix manipulation of the orbital indices
42K (see, for example, EqA23)). Substituting Eq(70) into Eq.
= Dapf Fi (G”(k,E)—G=(k,E)) (65) and expanding, we get the continued fraction expansion.
a
GR=(E~H,—2RB~D®(E~H,~3R®-D
d?k
:DapJ 72AKKE). (69) ®(E-Ho,—3Rf-Dg-.-)"H)~HL (72

To demonstrate the power series expansion of ().

In Eq. (68), D, contains all of the prefactor terms in Eq. \ye first multiply through on the left b@R to rewrite it as

(A13). Substituting the expression fdr(E) into Eq. (17)
and using Eq(15), we obtain

G==GR3~GA+ GRS <BGA. (73
R d%k R The second term on the right is a source term due to injection
2 (E):Dapf 2,20 (KE). (69 from the contacts. We denote it 8 GRS <BGA. To make

the result most transparent, we write the following equations
We note that since the total scattering rétedepends for G= using the single-band model for diagonal self-
solely on the total number of states, and not their occupa- energies. Then, the block matrices are scalars, the order is
tion, Pauli exclusion plays no role in incoherent elastic scatnot important, and the factors @R and G* can be com-
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bined into|GR|?. We denote the diagonal elements ®f First, we use the single-electron or low-density approxi-
and S with a single subscript a&;~ and S, . With this no-  mation to calculate the polar optical phonon retarded self-

tation, Eq.(73) becomes energy,>R. In the calculation of” in Eq. (16), 3~ is set to
zero and®~ is calculated from Eq(A7) replacingG~ with
Gf(k)zz |GfL,(k)|22 D,_,(k,k’)Gf,(k’)vLS,_(k), —iA. This approximation is valid for low electron densities,
L’ ’ K’ 74 when the electron density per unit energy is much less than

the density of states. This condition is valid for low doping,
where we have explicitly written out the convolution over high temperatures, or for devices under bias when charging
transverse momentum in EZ1). Suppressing the layer in- is negligible. The last two conditions apply to symmetric,

dices and iterating, Eq74) becomes room temperature RTD4: is now of the form
G==S+|GR’DeS+|GRI?De[|GR?DeS]+ - - - =D, ®A, (77
(75)

whereD_ = ngd(E+ w)+(ng+1)8(E—w) contains the

. . . pop
Note that the form of Eq(75) has a physical interpretation. matrix element squared ¢fep, N is the Bose-Einstein fac-

The electron density at layéris composed of multiple con- oy, 4, is the polar optical phonon energy, asdnow repre-

tributions. The first terms, represents flux injected directly sents convolution over both transverse momentum and total
from the contacts. The next terfG"|°D® S, represents the gnergy. Using thid” in Eq. (17) to calculateSR results in
contribution from flux injected from the contacts that scat-

tered at various layerk’ and then propagated from layer ER:DSO,@ GR. (78

) - R :
L to layerL according tdG " ,|2. The third term represents | other words, the retarded self-energy is now obtained from
the contribution from flux that scattered twice in getting from Eq. (A7) replacingG~ with GR.

the contact to layer and so on. We can formally write down In this approximation, the non-equilibrium Green func-
the solution to Eqgs(74) and(75) as tion theory no longer accounts for Pauli blocking and it be-
G<=[1-|GR|?D]!s. (76) comes equivalent to a single electron thedty? There are

two large benefits. The first is that the principal value inte-
For N layers andNy transverse momené&i?ﬁ arl1d_S are  gral in Eq.(17) is performed analytically. The second is that
vectors of length N\N, and [1—[G"[*D]™" is a the coupling between the equations 18R and G= is re-
(NN X (NLNy) full matrix. Typical numbers that we use moyed allowing them to be solved independently as dis-
in single-band simulations afé =50 andN, =200 resulting  ¢,ssed for the case of elastic scattering in $€¢a). Since
in a full matrix with 1¢ elements which is too large to allow only GRis needed to obtaiB R, the self-consistent equations

a direct solution. The method that we have used to solvgyr GR and SR form a closed loop independent of the equa-
Eq. (74_) is Jacobi iteration combined with successive ovelijon for G< and3 <.
relaxation(SOR. The method of solution is similar to that described for
the case of elastic scattering in Se/ B) except that
N, = (Emax—Emin)/o total energies are coupled wheEg,,,
With polar optical phonon scattering, the self-consistentnd E,i, are the maximum and minimum energies of the
solutions of EQgs.(65) and (66) combined with the self- total energy gridwe are assuming dispersionless polar opti-
energy expression§A9), (A10), (16), and (17) are fully ~ cal phonongs The solution ofGR and3R can still be cast as
coupled. Worse vyet, all energies are coupled through th@ continued fraction expansion, EG2), except now rep-
principal value integral in the calculation &R, Eq. (17).  resents convolution over both transverse momentum and to-
Furthermore, the self-energies are non-local, MjIxN_  tal energy and o« ngd(E+w)+(ng+1)S(E—w). In the
matrices in a single band model. Thus, a self-consistergelf-consistent solution dBR and %R, we need to store two
solution requires the storage of four double-complex,double-complex four-dimensional functioﬁifyL,(k,E) and
four-dimensional  functions, GEL,(k,E), GEL,(k,E), EEL,(k,E). For the single band model, the functions are of
EEL,(k,E), andEf’L,(k,E). For our typical energy grid size size NEX N XN, which, for our typical numbers of
of Ng=150 in a single band calculation with, andN, as  N_=50, N,=200, andN,, = 13, results in a memory require-
above, 4.2 GB of memory are required. For this reason, w&ent of 104 MB.
have developed a number of different approximations to treat _ Once a solution ofR at theN,, energies is obtained,
the polar optical phonon self energy. The remainder of theGsL,(k,E) is stored and used in the self-consistent solution
article discusses various approximate methods for calculabf G= andX < at that same set &f,, energies. The equation
ing the self-energies. for G= has the same form as befaief. Eq. (74)),

C. Inelastic (polar optical phonon) scattering

GEL,(k,E)ZSLYL,(k,E)ﬂLLSt GEL, (KX DE, 1, (kKNG (K \E~w)+(ng+1)GL, (K ,E+ )]G |/ (KE),
1.Lk2 k'
(79)
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except that now the self-energy is non-local and couples
GEL,(k,E) to ny,_,(k,Et ). After a self-consistent solu-
tion for G< is obtained for one set dfl, total energies, a
new set is chosen and the calculations are performed agair
This is repeated until the value for the current, Ef9),

Device

*=D® G %, ‘_'7| $<B
TN —

Z<B | Incoherent [ Right
. Scattering k I Reservoir
converges. Left ! k, 1 pRE
. . . Reservoir >R 2
The self-consistent solution @R and G= for multiple <_§r =D®G; [

coupled energies is still computationally intensive. Also, a /\\_/\/\
self-consistent Born approximation requires a converged so-

lution of theX,’s and theG’s to conserve current. This can be

numerically problematic. For these reasons, we have sougiG. 2. Physical interpretation of the self-energies for single sequential
out finite order, non-self-consistent treatments of scatteringscattering.=® accounts for the out scattering and energy shifts and

We tried a first Born treatmeftHowever, we discoy- accounts for the in scattering.
ered that the approach is only valid for calculating the valley

current of an RTD. The problem arises because the first Borflgn Thus. we are forced to derive approximations for the
H R _Ry—1 R R H H ' !
treatment approximates (1g~c") "~ as 1+g 0" which is  gejf.energies using physical, intuitive arguments, and then

only valid forg™o™ < 1. We found, numerically, thatforany check afterwards that the approximations do conserve
typical RTD, a first Born treatment of scattering resulted iNcurrent.

the spectral function becoming negative near resonéaice The general physical picture which guides us is the mul-
explanation is given in Ref. JQwith a corresponding nega- pje sequential scattering picture which informs the work of
tive current density in that narrow energy range. Referencegqp|in and Liou® The particular picture which leads to our
37 and 38 are examples of the use of first Born approximaging| equations is the following. A plane wavey, injected
tions. For.a'general purpose device Ca|Cl:I|atI0n,' itis essentiglom the contact at enerdy propagates into the device and
to use a finite order treatment of scattering which keeBs  scatters either elastically due the the random potential of in-
in the denominator oG~. terface roughness, alloys, ionized dopants, or acoustic
phonons, or inelastically due to polar optical phonons. Flux
VI. MULTIPLE SEQUENTIAL SCATTERING is removed from the_ incident wave and_ fed into the scattered
waves, 1, at energieE and E+ w, which have no phase
The only finite order approach that we have found whichcoherence with),. The termw is the polar optical phonon
can be used for both the calculation of the resonant and ofénergy. The waves, now propagates and scatters elastically
resonant current is based on an algorithm which allows ongiving rise to,, etc. An infinite number of elastic scattering
to truncate the continued fraction expansiorG, Eq.(72),  events and only one inelastic scattering event are allowed to
at any order and still conserve current. The correspondingccur. When one extends the multiple sequential scattering
equation forG=, Eg. (75 or (79), becomes a truncated algorithm to infinite sequential scattering, it becomes the
power series expansion. The equations resulting from a firgelf-consistent Born approximation. Our derivations use the
order truncation can be shown to be identical to equationabove picture combined with a physical interpretation of the
written down by Roblin and Lio§.The approach is a single self energie$®*°In the non-equilibrium Green function for-
electron theory which ignores the Pauli exclusion principlemalism, the effect of outscattering is containecifi and the
in the calculation of the polar optical phonon self-energy.inscattering is contained i& <.
From an applied point of view the approach has strong posi- . . . .
tive aspects: it allows fast first order calculations, it con-" Single sequential elastic scattering
serves current, and it appears to give reasonable physicél Equations of motion
results for devices under high bias. From a theoretical point  \ve first derive equations for treating incoheretastic
of view the approach is unsatisfying and incorrect; it violatesscattering in the single sequential scattering approximafion.
detailed balance in equilibrium giving rise to non-zero equi-|n Appendix B, we use these simple equations to demon-
librium current flow for devices that are not symmetric. Nev-srate current conservation, the violation of detailed balance,
ertheless, it is the only finite order approach that we haveynq the non-zero equilibrium current. EG80—83 can be
found that consistently gives reasonable results for a varietyhown to lead to identical expressions for the current and

of high bias devices. _ N _ self-energy written down by Roblin and Liou in Secs. V and
The greatest difficulty in deriving a non-self-consistenty;| of Ref. 6.

approximation for a self-energy is ensuring current conser-  For single sequential elastic scattering, we have an inci-
vation. Diagrammatic perturbation theory offers rules thatyent wavey,(k), whose propagation is governed Bf,

can be mechanically followed which ensure current consergcattering and creating a wave (k') which has no phase
vation. However, diagrammatic perturbation theory is base@oherence withy,(k). Sincey; (k') suffers no further scat-

on a power serie_s expansiqn of the Green function. Since fring, its propagation is governed by the bare Green func-
partial power series expansion is not useful to us for modelgjo GR. The equations that we write down for the Green
ing RTDs, we are forced to work with a partial continued fnctions are

fraction expansion, and there are no rules, of which we are b <RrB R ~R
aware, that can be followed which ensure current conserva- (E—Hg—2"°-D®G1)Gy=1, (80)
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GXNE)=[E-H"-6F (E)]” Gy(E)=GXE)Z M (E)G(E)
i o N~1

f oy (E)=D,®Gy(E)

of (E)=D,®G! (E) +

G,§_1 (E)= [E — Hn[) _ G;,C_:(E)] -1 Gi (E)= G‘s-l(E)O';(E)G:C_I (E)
f oy (E)=D,®Gy_(E)

v
4

(6*(E)=D, ® GNE) h

\GNE)=[E-H - c/(E)]”

G (E) =G E)o;(E)G'(E)

G (E)=D, ® G*(E)

J
(" 6ME)=D, ® G'(E) )

-1 +
\G/(E)=[E-H]] /_>CG4T<E>=Gf<E>af(E>Gﬁ<E> )

Begin with calculations of bare Green
function for all transverse k.

Calculate the electron density and current using all of the G

-
( G*(E)=Y G;(E) )

(1,(E) and J,(E) from Egs. (18) and (19).)

FIG. 3. Flow chart showing the multiple sequential scattering algorithm for incohelastic scattering. The equations are numbered so that the bare Green
function isGY.

(E-HP-3RB)GR=1. (81  another stateX"). The out scattered flux frork, is scat-
tered into statd, (X ~). Statek, leaks out into the contacts
The self-energyP®GY, in the equation of motion fo6} (3 RB).
accounts for the loss and spectrum shift resulting from the  This set of equations is solved by first calculating the
outscattering of staté, to ;. The equations that we write bare Green functions?, then the self-energyD ® GY, and

down for G andGj are then the Green functiofs§. With G¥, one then calculates
e R <BAA Gg , thenD®Gg , and finallyG] . The electron density and
Gy =Gp2 "Gy, (82 current is found from summing the contributions from both
G, andGj using Eqs(18) and(19), respectively.

The source term fo; , =B is due to injection from the
contacts. The source term f@] , D® Gy , is due to inscat-
tering from G . Figure(2) illustrates the physical interpre- To observe the relationship between E@0) and(81)
tation of the self-energies. The left reservoir injects a statand the truncated continued fraction expansion of &8),
ko into the device £~B). Flux can leave statk, by either  write 0f asD®(E—HP—3RB)~1 and substitute it into Eq.
leaving the deviceXR®) or incoherently out scattering into (80) to obtain

2. Truncated expansions
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GG=(E-H5—3RE-D@(E-HJ—3RE)~1)~1 (84

which is the first order truncation of E¢72).

To observe the relationship between E(@2) and (83)
and the truncated power series expansion of (Z§), note
that the solution of the diagonal elements@§ is (in the
single band model using the notation of E@75))

Gy =|G§|?2 “B=S,. The solution for the diagonal elements

of Gy is (again, using the notation of Eq(75))
G; =|GY|’D®S,. DefiningG==Gg +G; , we get

G =%+|Gf|’DeS, (85)

similar to the first two terms of E(75).

The difference between simple truncation of E¢&5)
and (85) is that there are two different Green functioﬁfg
andGY, contained on the right hand side of E§5). GT is
shown explicitly, and3R is contained irS,. This is essential

Go (E)=Gg2 “®Gq(E)

G; (E)=GJ(E)[D® Gy (E)]GL(E)

Gn_1(E)=GR_1(E)[D®Gy_,(E)IGN_4(E)

Gr(E)=GR(E)[D®Gy_4(E)]GR(E). (87)

Egs.(87) are the Green function analogue to the wave func-
tion equations for they, . Their physical interpretation is as
follows. Gy corresponds ta,. The source termy =8, is
due to injection from the contacts and propagation is gov-
erned byGf}. G (E) corresponds tay,(E). The source
term, D® G, (E), results from the incoherent elastic inscat-
tering of Gy (E) and propagation is governed lﬁllR(E).

G; elastically out scatters providing the source term for

to conserve current. However, it makes impossible the equi®z (E), etc. The electron density and current are found from
librium relationship betweei® < and the spectral functions Summing the contributions from all of th&;" using Egs.
or sum of spectral functions. In other words, there is no(18) and(19), respectively.

equilibrium relationshigG==ifA in the multiple sequential

In Fig. (3), we show a flow chart displaying the order in

scattering theor§. This is the source of the violation of de- Which the equations are solved. In the figure, we reverse the

tailed balance and of the non-zero equilibrium current.

B. Multiple sequential elastic scattering

The extension of Eqg80—83 to include multiple scat-

numbering system of the equations to correspond to the num-
bering system used in the numerical solution procedure. The
bare Green function becom&. The number of eventhl
can be set in advance, or it can be determined by a conver-
gence criterion foiGR .

We have used the simple examples of single sequential

tering events is straightforward. The equations for the reand multiple sequential elastic scattering to investigate the
tarded Green functions governing the propagation of the suderoperties of the multiple sequential scattering algorithm.

cessively scattered waves are
[E-HP-3RE_DeGHE)IGR(E)=1

[E-HJ-SRB-D&GH(E)IG(E)=1

[E-Hg-32"®-D&GR(E)]IGR_1(E)=1

[E-HD—3RBIGR(E)=1. (86)

The physical interpretation of Eq$86) is as foIIows.Gg
governs the propagation of the initial injected wayg, The

We now derive the equations which we find most useful for
our device simulator in which elastic scattering is treated in
the multiple sequential scattering or self-consistent Born ap-
proximation and the polar optical phonon scattering is
treated in the single sequential scattering approximation.

C. Multiple sequential elastic scattering and single
sequential polar optical phonon scattering

We write down the series of equations which are the
starting point for both the MSS and self-consistent Born
treatment of the elastic scattering processes. If we truncate
the series of equations at some finite order, we get an MSS
algorithm. If we let the series of equations go to infinite
order, we can analytically sum the series to obtain a self-

self-energyD ® GR(E) accounts for the spectrum shift and consistent Born treatment of the elastic scattering.
loss due to the incoherent elastic out scattering into staté. Equations of motion for G R

. G? governs the propagation of statg, and G? is
dressed by the self-ener@® G?(E) resulting from the out
scattering ofi; into statey,, etc.

The set of equations for th@< are

The physical picture described in the paragraph preced-
ing Sec.(VI A) leads one to write down the following series
of equations for Green functions which govern the propaga-
tion of the various scattered waveg,.

E-HP-3R—D,@GRE)-D "9GXNE-w)-D;*@GRNE+w)

pop

~ v ~

pop

R
2el
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[E— HE—ERB— De® G?(E)]G?(E) =1 Egs.(92-95 for Gi< are the Green function analogue to the
D <RB_ R R e wave function equations for the, . Their physical interpre-
[E-Ho—= Dei® G3(E)1Go(E)=1. tation is as followsGg corresponds ta),. The source term,
: (89  ><B, is due to injection from the contacts and propagation is

[E+w—HP—3RB_D |®G§(E+w)]GT(E+w)=1 governed byGS (note thatG” is the hermitian conjugate of
g . ¢ o o GR). G (E) corresponds toy;(E). The source term,
[E+w—Hg—2""-De®G3(E+w)]G3(E+w)=1. D.®Gg (E), results from the elastic in scattering of

: (900  Gg (E) and propagation is governed IGf(E). G elasti-
E—w—HP—SRB_D oGRE-w)IGRE-w)=1 cally out scatters providing the source term @j (E), etc.
[E-w ° ERB el® ;( @)] ;( @) G;(E*®) corresponds toy,(E*+w). The source term,
[E-w—Hy—%""—Dg®G3(E-0)]G3(E-w)=1 D, ar®™®Gg (E), results from the inelastic in scattering of
: (91) G, (E) due to the polar optical phonorisee Eq(A9)) and
RB propagation is governed b@?(Ei ). G (E*+ w) elasti-
In Egs.(88-91, =™ accounts for the open system boundary .o oyt scatters providing the source term @5 (E+ w),
conditions,® indicates convolution over transverse momen-

tum, D, contains the matrix element squared due to the .If we truncate the chains of Eqg89—91 and(93—95 to

; ; >em :
elastic scattering processex, ;" = ng+1 contains the ma- 5, finite order, we have a multiple sequential scattering
trix element squared governing the out scattering due o thgeaiment of the incoherent elastic scattering and a single
emissionof polar optical phonons, anl,,; * N CONtAINS  gaqential scattering treatment of the polar optical phonon
the matrix element squared governing the out scattering dug.aitering. To solve the truncated series of equations, one

to the absorptionof polar optical phonongsee Eq.(A9)).  phegins by solving for the bare retarded Green functions at
The equations are written in full matrix notation and trans'energiesE and E=w and at all transvers&. Then one

verse momenturk has been suppressed for compactness ofyoyes up the three chains of Green function equations solv-
notation. _ _ ing for theGFT. At the top, one calculatég§ and then moves

R The physical interpretation of Eq88-9) is as follows. 4,61 15 the equations fdB = gettingG; and then down the
Gy governs the propagation of the initial injected Wave, i raa chains of equations f@ at energie€ and E+ w.

R R f
Yo- Z¢) ando,, account for the spectrum shift and loss duépe glectron density and current is found from summing the
to the incoherent elastic and inelastic scattering, reSpeCt'Veh(:ontributions from all of theG" at energiesE and E+
i +

The wave o(E) can be scattered into statgg at three using Eqs(18) and(19), respectively.

different energl_esE, and_E; - The stateapl_can t_hen be In Fig. (4), we show a flow chart displaying the order in
scattered elastically an infinite number of times into states hich the equations are solved. In the figure, we again re-
Y2, 3, €tC. The propagation of statgg — .. is governed verse the numbering system of the equations to correspond to

byG?— ch the numbering system used in the numerical solution proce-
dure. The bare Green function becon@$. The number of
eventsN can be set in advance, or it can be determined by a

2. Equations of motion for G < convergence criterion fo@ﬁ independently at each energy,

+
The physical picture described in the paragraph precedj-E andE=o.

ing Sec.(VI A) leads one to write down the following series

of equations foIG=. ) ) , .
D. Self-consistent born elastic scattering and single

Gy (E)=G}E)=~BGL(E), (920  sequential polar optical phonon scattering
GI(E)=G(E)[Dei®Gq (E)]GY(E),

_ R _ A 1. Equations of motion for G R and G<
G3 (E)=G3(E)[De®Gy (E) ]G3 (E),

If we let the series of Eq989—-9) become infinite, all
(93)  oftheGP's,i e {1, --,»}, at a given energy and transverse

Gf(E+w)=G§(E+w)[D<ab®G§(E)]G’f(E+w) momentum, are identical. Therefore, the infinite set of Egs.

pop (88—91 becomes
G5 (E+ ) =G5(E+w)[De®Gy (E+w)|GH(E+w) [E-HD—3RB_SR(E)—oR (E)JGR(E)=1,  (96)
G (E+w)=GE(E+w)[Dei® G5 (E+w)]G5(E+ w), [E—HC—SRE_SR(E)]GR(E)=1, 97
(94 [E+w—HC—SRB_SR(E+w)|GR(E+w)=1, (98
GI(E—®)=GY(E~w)[Dpep'®Gq (E)IGHE—w) [E—0—HP—SRP_SR(E— 4)|GR(E—w)=1, (99)

_ R A
Gy (E~w)=G3(E~w)[Dei® Gy (E~w)]G5(E~w) where in Egs.(96—-99, SR (E)=D¢®GR(E) is the self-
G(E—w)=GRE- D.®GS(E—w)GANE-w). energy due to the elastic scattering mechanisms and it is
3(E7@)=G5(E~0)[Da® G, (B~ w)]G3(E~w) calculated self-consistently witf, and o5, (E) =D sy’
(95 ®@GH(E—w)+D oG (E+w).
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858/,

/66T aunr GT ‘2T 'ON ‘I8 ‘oA “sAud "|ddy ¢

‘e 18 axen

(62e)=[e- - o) -0, )] ) > (G:(B) = GHOT(EGHE)

(o5 (E) = D7 ® GL(E)) (o(E") =D ®GL(E) ) (o(B)=D,®GE) )

(ot B=onBr+an,® )

O (E)= Dy ®GR(ET) (0% (E)=D* ® GN(E") _ 0%(E)=D, ® G(E) G(E")= GAE )o5m (E)GH(E)) (Ga(E") = GA(E")Gsan (EV)GH(E") EG_&(E)-GL‘(EWT(E)G"L’E’ _J
E{,‘(E')-[E‘ HP - ot (B G"(E*) [E* H”—GN I(E*)] G”(E) [E H”—O'N ,(E)] oy(E")=D,®GH(E") 6y(E')=D,®Gy(E") 0y(E)= D, ® Gy(E)

(ol(E)= ®G(E) (olME")=D, ®G"(E" (al(E)= D,,®G"(E) Gi(E)= G"(E‘)oz(E )GE)) (GF(END= GR(E*)O'Z(E+)GA(E*] (E)= G"(E)GZ(E)G"(E) _a
GHED= [E N A DA [E' 12 - ote)] ") \ G =[e- H”-%(E)] 61<E>—D¢,®G‘<E> O/ (E") =D, ® GX(E’ [m(E) De,®G<<E>

(of(E)= D,,®G§(E) " O(E')=D, ®G'*(E* ~ oy(E)= D,,@G"(E) . jCG(,(E‘) G‘,(E )o,(E‘)G‘(E)(GO(E+) GR(E*)O'.(E*)G‘(E) CG<(E) G"(E)o,(E)G‘(E) )
GHE)=[E -H!] GRE")=[E" - GNE)=[E-HP]" ¢ ¢ ¢

Calculate the electron density and current using all of the G*

N N
GY(E)=G5(E)+>,G(E) and G<(Eia))=G§(Etw)+ZG,f(Eiw))

n=0 n=0

v

(' and J from Egs. (18) and (19). )

Begin with calculationsof G*(E)and GMNEtw)
starting with the bare Green functions.

FIG. 4. Flow chart showing the multiple sequential scattering algorithm for multiple incohelgstic scattering events and a singfelasticscattering event. The equations are numbered so that the pure Green function
isGR. Ef=E+w andE"=E- w.



The physical observables of electron density and curren
are calculated by summing the contributions from all of the

GA(E)=GX(E)|D,,9 GS(E)+D G (E)|GA(E
G; in Egs.(92-95. We define AlE)=GalE)| Du®Co (E) e’®,~§’1 i (E) |GelE)

S(E)= =(E). 1
Ga(B)=2, G (E) (100 =GR(E) [ D,®GI(E)+D ,©G(E) | GA(E).
Since all of theGR=GY are identical for a given energy and P S5(E)
transverse momentum, we can perform the sum. Summing (101
the infinite series of Eq$93), we have Summing the infinite series of Eq@4), we have

o

GSE+w)=GR(E+w) D;;;,b@c;;(E)wel@Zl GL(E+w) |GAYE+w)
~

=GR(E+w) | DE%®GE(E)+D, ®GE+w) | GHE+w)

pop
0';;;,1’ SHE+w)
(102
and finally, summing the infinite series of E¢95), we have
G5(E~w)=GR(E-w) D,,i,“,j’m;g(E)+De,®2l G (E- o) |GAE-w)
i<
=GX(E-w) | D3®GF(E)+D ®GH(E~ ) | GH(E—w).
ooy S H(E—-w)
(103
|
Equat_ions(96—99, (92), and(101-103 are the final set of UEOP(E): Dpay'® GR(E—w)+ Dgoa’;)@ GR(E+w).
equations that we need to solve. (110

Knowing the self-energie&rﬁop(E) and ES(E), we then
2. Solving the equations calculateGY(E) from (96):
We now write down the equations in the order in which D_<sRB_sR R RiEY —
E-Hg—2""-3X(E)— E)]Go(E)=1. 111
they are solved. First, the self-energigS, in Egs.(97-99 [ . ° el(B) = 750y E)1Go(E) 1y
are solved self-consistently with their correspond®g at ~ With Gg(E), we immediately hav& (E) from (92):
energiesE and E+ w and for all transverse momenturk,

The equations are G§(E)=G§(E)E<B(E)G§(E). (112
We can now calculate the source terms for E481—-103,
_HyD_wRB_wR RiE)—

[ER N REel(E)]GEI(E) " o 04"=De®Gq (E), (113

2e(E)=Dg®Gg(E), (105 X )
Sa=p=2x G5 (E), 114
[E+w—HS—3RE-3S8(E+w)]GH(E+w)=1, (106 “pop ~ Dpop © Co (&) (114
T S"=D "9 G (E) (115

SR(E+w)=De®GR(E+w), (107) pop — Zpop

and then we self-consistently solve Eqs01-103 for G,

[E-0—Hg—3RP-35(E-w)]GG(E-w)=1, (108  and s using Jacobi iteration combined with SOR as de-

2§|(E—w)=De|®G§|(E—w)- (109 scribed in Sec(V B).
—_ R 0 A
With the solution of Eqs(104—109, we now have the elas- Ga(E)=Gg(B)og +Xe(E)IGG(E), (118
tic self-energy,>,(E), from Eqg. (105 that goes into the 35(E)=Dg®G5(E), (117

matrix on the left hand side of E¢Q6), and we calculate the
inelastic  self-energy, o, (E), from Gg(E+w) and  Gg(E+w)=GH(E+w)[opal+35(E+w)]Gh(E+w),
GX(E-w): (118
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So(E+w)=D®G5(E+w), (119 For the self-consistent potential calculation, we also
need the charge density in the leads. This is calculated using

Go(E—0)=Gg(E~w)[0pey + 2G(E~ w)IGH(E—w), —iG==1A, in Eq. (18) where A,=i(GR—G2) with GF
(120 given by Eq.(88). A, is used because it is the most
35(E—0)=De®G(E—w). (121) “dressed” spectral function best representing the true spec-

tral function of the leads. The charge density is then used for

The current and electron density per unit total enefgyin  generating the Jacobian in the Newton-Raphson scheme as
the device is then calculated by summing the contributionglescribed in Appendix C.
from Gg (E), G5 (E), andGg(E+ w) using Eqgs.(19) and
(18) (ignoring the integral over energyAfter the calcula-
tions are performed for one total energy, another total energy Once one is confident that the numerical solutions do
is chosen, the calculations are repeated and the new currezdnserve current, considerable numerical efficiency can be
per unit total energy is added to the running total. This isobtained by calculating the current using E45 modified
repeated until the integrated total current and electron derin a similar manner as E¢B1) in Appendix B. These equa-
sity is obtained. Current conservation is shown in the saméons require only the block corner elements @R and
way as in Sec(VI A) summing the contributions to the di- G=. This information already exists from the MSS or self-
vergence of the current fror&< calculated in Eqs(112), consistent Born calculations. E€L9) uses the off-diagonal
(116), (118, and(120. blocks of G= which require an extra calculation. For the

A flow chart of the solution procedure is shown in Fig. MSS approaches described in Se@4.B) and (VI C), the
(5). Self-consistent calculations are indicated by boxesurrent per unit incident energy is found fraffior a nearest
drawn with heavier linestyles. neighbor model

E. Current

2e N
Jo(E)= 2% Zk tr[Ff'l(k,E){ferl’l(k,E)Jri Gglyl(k,E)ﬂL;l G:M(k,E))H

N N
2e 2e
B . < B ; <
+a ; triFl,l(k,E+w)|nzl G (kE+w) [+ ; tr[l“l,l(k,E—w)lnzl Gy (KE-w). (122

For the combined self-consistent Born calculation described in(8&€&), the current per unit incident energy is found from
(for a nearest neighbor model

2e B H < <
Jo(E)= & 2 T Tk B LA, (KE)+i(Gg, (KE)+Gg, (KE)])

ellv

2e ) 2e )
+ ; L ik E+)iGg, (KE+w)}+ % T4k E-w)iGg (KE-w)}, (123

whereA,=i(G{— Gyp). The termf A, results from the con-  Fig. (3) with the self-consistent Born calculation which con-
tact source term in the equation f@5 and represents the sists of Eqs(65), (66), (70), and(71). The interface rough-
inflow of current from the contact to the device. T ness self-energy, EGA35), is used with a correlation length
terms represent the backflow from the device to the contacbf A=10 nm.

Figure (6) shows how the MSS algorithm converges to
the SCB result at the peak and valley current regions of the
GaAs / AlAs RTD. Figure ) shows the overall-V curve
calculated using the SCB algorithm and the MSS algorithm

In this section, we numerically illustrate the convergencewith one scattering everiFig. (3) with N=1). As discussed
of the multiple sequential scattering algorithm with the self-in Ref. 15, the electrostatic potential is calculated self-
consistent Born algorithm. We consider two different RTDsconsistently with the quantum charge in the absence of inco-
at T=4.2 K which differ only in the barrier material. One herent scattering. Once the potential is obtained, it is then
RTD has AlAs barriers and the other hag AGa, g5As bar-  used for the calculation which includes incoherent scattering.
riers. The device structure consists of 19.2 nm intrinsic GaAS his approach is used to reduce CPU time since we calculate
spacer layers, 3.4 nm barriers, a 5.66 hm GaAs well, and Sin extreme number of scattering evenk$é=4000 in Fig.
doped 162 cm2 GaAs contacts. The AlAs barrier RTD is (3)) to demonstrate convergence of the MSS and SCB algo-
the same device modeled in Refs. 14—-16 using the algorithirithms.
illustrated in Fig.(4). Here, we show the convergence of the Figure(6b) shows the convergence of the MSS and SCB
elastic multiple sequential scattering algorithm illustrated inalgorithms in the valley current region of theV. The cur-

VII. NUMERICAL COMPARISON OF MSS AND SCB
CALCULATIONS

7860 J. Appl. Phys., Vol. 81, No. 12, 15 June 1997 Lake et al.



1.  Self consistent calculations of G/ and X at 2. Calculation of GR(E) and G<(E
energies £ and EX @ and all transverse k . ) o (E) o (E)

( » _ D RB R -1 GR
| GiE-o)=[E-0-1) 2% -Zi(E-a)] " k2 eor

R _ R
\Za(E-0)=D, @G, (E-w) D" ® GR(E - w)+

_ GeI; >ab R

rGS(E+a))=[E+w—Hf—ERB—Zf,(E+a))] 3 Dyop ® G (E+ 0)
R
| ZH(E+@)=D, ®G](E+w) of (E)

|
A )
':-_\N
5
I
&y
|
o
|
™
8
!
™M
L>
C)

k)Eg(E) =D, ® GE(E)

. CGOR(E) =[E-H -2 -25(E)- o}, (E)] )

el
{G(‘f(E)
(G5 (B) = GRE)2* (E)GL (E))

z

P G
Y * Gy (E)
Y. : _
4, Self consistent calculations of G, and X 3. Inscattering source
atenergies E and E* @ and all transverse k. ¥ terms.
( )
= < _ R <0 < A
Gai(E)=Gj (El[o,_,,_ (B) + z_e,(Q]Gi(E_)_ _____ | 5<°(E)=D, ®GS(E)
X(E)=D, ®G;(E) Elastic inscattering.
((Gi(E+w)=GRE+ o) Opor (E+ @)+ Z5(E+)|GH(E+ o) Y—l| o5 (E+w) = D5 ® G (E)
T e ST T T == - Inscattering from absorption
t a(E+®) =Dy ® G, (E+ ) J of polar optical phonons.
<em — ny<em <
((G5(E-0)=GH(E - 005 (E-0) + Z3(E - 0)|GA(E - ) \s4—]| Trr (E~®) =Dy @ Gi(E)
——————————————— Inscattering from emission of
t 2(E-w)=D, ®G;(E-w) y \polar optical phonons. )

5. Calculation of electron density and current
from all of the G* .

G*(E)=G;(E)+G(E)
G (Exw)=G(Etw)

( n and J from Egs. (18) and(19))

G;

FIG. 5. Flow chart illustrating the algorithm for self-consistent Born elastic scattering and single sequential inelastic scattering. Self-consistent calculations are
indicated by boxes drawn with heavier linestyles.

rent calculated in a second order multiple sequential scattegence of the MSS algorithm at peak current scalef /d§
ing approximation is essentially identical to the current cal-wherel is the fully dressed width of the resonance dhds
culated in a self-consistent Born approximation. The firstthe intrinsic width of the resonance. This quantity is simply
order calculation is very good. This is consistent with thethe scattering rate times the resonant state lifetime. The in-
“capture” point of view of Chevoir and Vintérand the trinsic resonance width of the AlAs barrier RTD is 3@V.
numerical result of Johansséh. The dressed resonance width in the self-consistent Born ap-
The convergence properties of the MSS algorithm at theeroximation is 2.7 meV. Figuré6c) shows the peak current
peak current are quite different. We believe that the converealculated with the MSS algorithm usiddg=1, 2, 4, 8, and
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FIG. 6. Numerical demonstration of the convergence of the multiple sequential scattering algorithm and the self-consistent Born @péntltohGaAs
/ AlAs RTD calculated using the self-consistent Born algorithm and the MSS algorithm with one scatteringleetr@onvergence of the MSS algorithm

to the SCB algorithm(b) in the valley current regior(c) in the peak current region for few scattering eveits; 1— 25, and(d) in the peak current region
for N=25-4000.

25 scattering events. Initially, the value of the current tends/1ll. SUMMARY AND CONCLUSION
to oscillate as the number of scattering events is increased.
There is almost no change in the current as the number of We have presented theory which can be used at a num-
scattering events is increased from four to 25. After 25 scatber of different levels of sophistication and complexity for
tering events, the MSS algorithm begins monotonically conimodeling high bias quantum devices. The simplest level,
verging as shown in Fig6d). At largeN the convergence of summarized by Eq50), is a generalized tunneling formula
the MSS algorithm begins to saturate with a current slightlywhich treats injection from both emitter continuum and
below the SCB result(compare theN=2800 and the quasi-bound states. It is just as fast as the usual tunneling
N=4000 curves in Fig(6d)). approachésand much more flexible, allowing one to model
For the A} 3:Ga, g5As barrier RTD, the intrinsic resonant devices such as those shown in Ref. 1. This is the level
width is 780 ueV which is 260 times larger than the AlAs heavily used in device design to quickly obtdiV charac-
barrier RTD. Figure 7 shows that the convergence of theeristics. At this level we have implemented several different
MSS algorithm at peak current is very fast. Afté=5 scat- nearest neighbor models: single-bdndwo-band!* and
tering events, the MSS calculation and the self-consistersp®s*.2*!" The next level is to include scattering in the de-
Born calculation are essentially identical. vice. We have numerically implemented in a single band
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37 ized dopants. The scattering self-energies result from the sec-
ond order term in the expansion of the exponential. For pho-
non scattering, the first order term is zero since

h'g 3.6 (aq)=(a2;>=0. For alloy disorder and interface roughness,
o the first order term results in the virtual crystal approxima-
< tion (VCA) Hamiltonian and, for ionized dopants, the first
S 3.5 order term is included through Poisson’s equation. Using
% Wick’s theorem to group the terni$,one obtains an equa-
§ 34 tion of the form(in block matrix notation
S
5 G (ktt) =gl (ktt)

33

+J dsf ds' > X [gfy,(Kit,s)
c c L, L 1
3.6‘23 oo 025 ><Efl;,_z(k;s,s’)gEZ;L,(k;s',tf)], (A2)

Voltage (V) In the self-consistent Born approximation the bafethat

occurs in3P in Eq. (A2) is replaced with the fullGP. The
FIG. 7. Numerical demonstration of the convergence of the multiple seteal-time self-energies that we ne&is, 3~, and ER are

quential scattering algorithm and the self-consistent Born algorithm at pealf)btalned from theEP usmg the relations of Langrefﬁ
current of a GaAs / AJzGa gAs RTD.

model the combined MSS treatment of elastic scattering an(]i' Phonons

single sequential scattering treatment of polar optical phonon The potential felt by the electrons due to bulk phonons
scattering described in Se¢/I C), and the combined self- has the general form of

consistent Born and single sequential scattering treatment of

polar optical phonon scattering described in Sg¢D). The E U e|q r +a‘r_ ), (A3)
valley current of an RTD calculated using the multiple se- \/— a

guential scattering algorithm converges within a few scatter-
ing events to the valley current calculated with the self-
consistent Born algorithm. The convergence of the multiple
sequential scattering algorithm at a bias corresponding to the

peak current of an RTD is much slower. eP:f Eryl(Vedr)wAn), (Ad)

wherea,, is the destruction operator for a phonon in mode
q The second quantized Hamiltoniéh, is

wherey(r) is the field operator of EJ5). In the long wave-
ACKNOWLEDGMENTS length approximation where'd"" is assumed to be slowly
Selman Hershfield introduced us to the single electrorvarying on the order of a localized orbital,
approximation for the self-energy described in Sec. V C.
This was the key that allowed us to bring together the self- Hep Z z U elquL

iq A2
4z 2 CaLkCaLk a

consistent Born approximation and the multiple sequential L.k

scattering theory of Roblin and Liou. Our understanding of

the multiple sequential scattering theory has benefited from +E Cz,L,kCc,L,k—qt (ag+ a’[q)_ (A5)
many conversations and correspondences with Patrick Rob-

lin. The work was supported in part by Texas Instruments  \we write the expressions f&~ andX <. The general
Incorporated. forms of X< and>~ are

APPENDIX A: SCATTERING SELF-ENERGIES s L/(k E)= E |Uk_q|2eiqu(L*L'+Va,u/)
q

a,l;a
To calculate the scattering self-energy, we calculate the
path ordered Green function in the interaction representation, X[n Gi Lo L (O E—Tiog)

P -
G, Lo (Kt +(ng+1)G, , L(AE+fiog]  (AB)

a,L;a

—i : and
= ——(Pe e e, | (el (1), (A1)

1 .
. . . > Ey— 24iqA(L—L" +v, o)
where P is the path ordering operat@rjs the Keldysh con- 2 Lo L (KE) v zq: [Ui—qle

tour, andH’(s) is the perturbing Hamiltonian. The brackets

(---) indicate the non-equilibrium ensemble averdgéand X[(Ng+ )G, .,/ (G E—fiwg)
an ensemble average over the random potential distribution -
resulting from interface roughness, alloy disorder, and ion- NG, L LG EF 0], (A7)
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where the indicesr and o’ run over the anion and cation
statesn, is the Bose-Einstein factor for modg and

1
5 a=a, «o

Va,a _% a=cCc, a'=a (A8)

0 otherwise.

In EqQ. (A8), the indicesa andc indicate an anion and cation
orbital, respectively.

a. Polar optical phonons

For dispersionless polar optical
|Ug|%=Bg?/(a*+q2)? where B=e?fw/2 (1le,.— 1le,) and
0, Is the inverse screening lendthif the Green functions

are only functions of the magnitude of the transverse mo-

mentum such as in a single or two baftdmodel, then the
self energies can be written as

B[ dq
EaLa/L’(k E)_ 2t|(|L L +Vaa|kqt)
X[(ng+1)G_ ... (0 ;E~fw)
+n8G,, o 1 (AET@)]  (A9)
and
S u(KE)= B qtI(IL L'+ g0l K00

x[nsejL_a, (O E—fiw)
+(nB+ 1)Ga Lia!, L;(qt,E+hw)]
(A10)
whereng is the Bose-Einstein factor for energy», and
I(|L_L’+Va,a’vz|=qut)

_,,\

-

Gc,c’ (q) Mc’,c'

M

(14

phonons FIG. 8. Self-energy diagram ., for both alloy and interface roughness

scatteri ng.

scattenng and high temperatfte so that
q~Ngt 1~ kgT/hwy=kgT/ficq then the self-energy is

d%k
471-26& L;a’, L(k E)

(A13)

D2kgT
zz,L;a’,L’(E): Ol p—Bf

where
1 {a,a'}={a,a’} or{cc}

£aa'=10  otherwise

(A14)

The acoustic phonon self-energy is block diagonal in
the anion and cation sub-blocks. The sub-blocks are full
matrices.

2. Alloy disorder

We consider an alloy of the typ&,B;_,C with a po-
tential of the form

V(r>:R2 vA<r—RA>+RE vB<r—RB>+RE Ve(r—Re).

C

- Jw/ad cog g A(L—L"+ vy )] jw/ad (A15)

Jo 9% @2+ a2 +k2+qd)2—4ak?q? Jo G We define an average potential

cod QA (L—L" +v, o) ]a5(az+ a7 +k2+q) V()= > [XVA(r—R)+(1—x)Va(r—R))]
[(0+ i +k*+dg)*— 4k?q;] > Fim(RatRe)
(A11) +3 Ve(r—Re) (A16)

For all of the self-energies to follow, we write the form Re
for <. The expression foE~ and3R are obtained by sub- and the perturbing potential
stituting everywhere the superscript’with* >’ or ‘R’, re- —
spectively. However, the expressions fBr~ will not be Va(r)=V(r)—=V(r)
needed, because all of the following scattering mechanisms
are, or will be approximated as, elastic. =(1-Xx)>, SV(r—Ry)—Xx2, V(r—Rp),

Ra Rg

b. Acoustic phonons (AL7)

The coupling for acoustic phonons is

, hD?
UgP=5 o
2pcC

whereD is the deformation potentigp, is the semiconductor
density, andc is the velocity of sound in the material. If
we make the usual assumptions of low eneil@astio

a, (A12)
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where 8V(r)=V(r)—Vg(r). The matrix elements of the
average(virtual crystal approximationHamiltonian are

(a,L[Hycal B,L")=(a,L|xHac+ (1—Xx)Hgd B,L")

(A18)

and the matrix elements @V(r) are
Moo =(@|V(r)|a’)=(a|Hac—Hacle'), (A19)
Lake et al.



N? are generated by the above procedure and igrirea
' ) o o! ° 'y have not ignored any terms in the evaluation of

O O O 10 1@ 7 % (Va(r)Va(r')), and Eq.(A22) is exact.
S ° ®) * O ° IQ ®l @ ° @ ° @ The self-energy for both alloy scattering and interface
' ° o! ' ° . roughness scattering has the form shown in F&. The
O o O o O o ORNNY . ] . @ layer index has been suppressed. For alloy scattering,
O O o ‘o e D D |Uk—¢/>=2A% which results from a factor oA/N, where
. ° o ! ol ° ° A is the cross sectional area aNd=2Rt. The expression for
© ° O ° O ° : @ : @ ° @ ° @ the self-energy is
g [ ] g ® g o | z ol @ ® 2 ® Z EEL;C”L:2A2X(1_X)MC,L;C,LM c’,L:c’,L
R N A Ly 6o
e 2 ,2,2, XA 2 CoLer (O (A23)
I ST A S The self ix | ly in the cation sub
o e self-energy matrix is non-zero only in the cation sub-
O, 9,0, —~ .| ¢ 2 [ 2 block of the block diagonal, and, within that sub-block, it is
O O o 0 | @ @ @ a full matrix.
d o d g i s In the single band model, we follow Chevoir and Vinter
O © O o 12 2 2 to obtain the matrix element squarel,?.” For example,
Interface layer, L with Al,Ga _,As we use the conduction band offset of the
two different materials, e.g., the conduction band offset be-
Cation type B: O tween GaAs and AlAs.
Cation type C: )
Common anion, A: e 3. Interface roughness
FIG. 9. Model of interface roughness. We model the effect of substitutional disorder in an in-

terface layer in the same way as substitutional disorder re-

sulting from alloy composition. We confine the disorder to a
whereH 5c andHgc are the Hamiltonians of the binary com- single layer and, within that layer, the cations of a given type
pounds, AC and BC, respectively. For the following discus-cluster into islands. This approach is valid for electron wave-
sion, we assume that the alloy is of the cation species. Fdengths large compared to the cluster sizes. Figayellus-
reasons of numerical tractability, we consider only the diagtrates our model.

onal cation-cation matrix elements 6¥(r) which accounts The potential in the interface layer is
for the chemical variations and ignores the bond length
variations in the calculation of the self-eneffy. V(r)=2, Vg(r—Rg)+ 2 Ve(r—Re)+ > VA(r—Ry).
The second quantized Hamiltonian representing the alloy Rg Rc Ra
disorder is (A24)
Rg and R¢ are the position of the catiorB and C in the
HaI:J' Ayt (HVa(r) e(r). (A20) interface layerL. Let materialB cover a fractionx of the

_ ) _ interface and materiaC cover a fraction *x of the inter-
Inserting Hy into Eq. (A1) and expanding out to second face. Then the average potential is

order, we are faced with evaluatindy (r)Va(r')) where

the brackets indicate an ensemble average. In a way similar V(r)=
ry= XVg(r—R)+(1—x)Vc(r—R
to the treatment of impurity averagiigwe define the en- (") R={%&RC} Vel )+ Vel )]
semble average of a function of multiple random cation sites,
F(Rq, ... ,Ry), as +2 VA(T=Ry), (A25)
Ra
- 1 1 _
I= N_. TN 2 TRy, -+ Ry, (A21)  where the sum oveR runs over all cation sites in layér.
cat Rq cat Ry

The perturbing potential is

where theN., is the total number of cation sites and the —

sums run over all cation sites. With this definiton,  Vi(r)=V(r)—V(r)

V(r)=0, and

=(1-x)>, V(r—Rg)—x2, 8V(r—Re)
(Val)Valr))=X(1=X) 3 V(r Rz V(1" ~Rea), " e

cat
(A22) = >  F(R)§V(r—R), (A26)
where the sum runs over all cation sites. Note that unlike the R={Re&Rc}
treatment of impurity averaging, in which terms of orderwhere
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1-x R=Rg - 2 d’q
F(R)= “x  R=R¢ (A27) EC‘L;C,,L(k,E):X(l—X)‘lA M LietMer Lier L 42

The average oY/, is zero and the autocorrelation B{R) is
E

T | 2 -
7' Vp71/C

c,L;c’,L(q;E)

X 1
: . : , (1+A%(q—k)*)V1+A%(g+k)?
We will consider both Gaussian and exponential forms for

Ar(|R—R’]). The problem is now reduced to one of a singlewhereE is the complete elliptic integral of the second kind
layer of alloy in which the cations of a given species cluster

(F(R)F(R"))=x(1-x)Ae(|R=R']). (A28)

(A35)

into islands. The clustering gives rise to a momentum depen-
dence in the Fourier transform of the autocorrelation func-

tion. The matrix elements o6V and the averagévirtual
crysta) Hamiltonian are the same as in Eq#18) and
(A29).

The interface roughness self-energy shown in E8jyis

<
ECLCVL X(1-x)M al:clMer e L

1
a2 Ued’GoLe (@), (A29)
wherelL is an interface layer.

Traditionally, a Gaussian form fak=(|r,—r{|) has been
assumedl’ 849

Ae(|r—r{)=elnria? (A30)
resulting in a spectral density of
|Ugl2=mAZe Ao, (A31)

If we can approximatéaflyL;czlL(k) as being dependent only

on the magnitude ok, then the self-energy in EqA29)
becomes

 L(KE)=x(1-x)mA% AR o M ot

d’q (A%kq 2,2
[ e e

(A32)

ch

wherel is the modified Bessel function,
| (x)=£JWd0ex cos?
0 7)o .

Recent scanning tunneling microscof§TM) work in-

dicates that an exponential autocorrelation may be more

appropriate?
Ae(lri=r{)=e Tl (A33)
with a spectral density of
2mA?
|Uq| W (A34)

If we can approximatGCl,L;Cz,L(k) as being dependent only

on the magnitude ok, then the self-energy in EqA29)
becomes
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w2
E(g,x):f doJ1—x2 sir? @
0

andb=(1+A2k?>+ A2g?)/(2kgA?).

The approximations used in the single band model for
alloy scattering discussed at the end of SubsA®) also
apply to interface roughness scattering.

4. lonized impurities

The potential resulting from substitutional ionized dop-
ants is

V(r)=2 v(r—-LiAz—R;), (A36)

wherev (r — LiAE— R;) is the potential resulting from an ion-
ized dopant atom at lattice siteAz+ R, andR; is the trans-
verse component of the lattice vector. The lattice vector rep-
resents the position of a cation for n-type doping and the
position of an anion for p-type doping. However, the differ-
ence in position of the anion and the cation is negligible
compared to the screening length in semiconductors, so no
distinction will be made between the two cases. The lattice
vector is written in cylindrical form since the doping concen-
tration is, in general, a function of the layér,.

An ensemble average is performed over the transverse
plane using Eq(A21) to obtain

(V(NV(r))= E Ev(r—LAz R)
cat

Xv(r'—LAZ—R). (A37)

In Eq. (A37), N'L is the number of ionized dopants in layer
L, Nga is the number of cations in laydr, andR is the
transverse component of a lattice vector.

Using a screened potential of the form

e2e %
Arer

v(r)= , (A38)

where q, is the inverse screening length=|r|, and the
two-dimensional Fourier transform

e e \a +k|z\

d’Re *Ry(z,R)= — ———-, A39
the general form for the self-energy is
Lake et al.



4

_ e 1 and integrating over the doped regions of the left and right
2o tia LK =g2 ; Ns A leads, the self-energy becomes
o VK= aPlILy LI+ Ly LA s< (k)= et sty
2 2+ [k—q[? cwhiealz T 8e gL TICA G
><(3§1 Ly, (O, (A40) e Vot Ik=al’[lL1~Lescl +ILo— Lercl]A
L . L 8 [a+[k—a[*]**
whereng=N| /A is the sheet ionized dopant density in layer 0
L.
<
There are two special cases that commonly occur. The XGal,Ll;az,Lz(Q)’ (A41)

first case is when the doping is confined to the leads and zero

in the device. Let the doping concentration in the left Iead,whereNg,Eé is the doping densityl/volume of the left/right
Ne, be uniform in the region from sites to L, and zero lead.

elsewhere; let the doping concentration in the right lead, The second case is when the doping dendi§?, is

N¢, be uniform in the region from sitels. to « and zero uniform throughout the device region and out to some layer
elsewhere; and any layerin the device lies betwedn, and L in the left lead and_. in the right lead. The self energy is
L.. Converting the sum ovdr in Eq. (A40) to an integral, then

_ et . e—ﬁ\Ll—L2|A[l+2B|L1_L2|A]_e—,e(L1+|_2—2Le)A_e—ﬁ(ch—Ll—Lz)A _
2al,Ll;az,Lz(k):@N K% B3 'Gal,Ll;az,Lz(q)
(A42)
|
where 8= \/q02+|k—q|2. Note that a termeAl11 does not appear since there is no
contact source term on the right hand side of B8g). One
APPENDIX B: DETAILED BALANCE AND CURRENT immediately sees that if the usual equilibrium relation holds,
CONSERVATION FOR MULTIPLE SEQUENTIAL G==Gg +Gy =ifA, then detailed balance holds, and the

SCATTERING equilibrium current is zero for each momentum and energy.

1. Detailed balance In the following, since we are considering equilibrium,

. . we dr h ript ohsincef, =fz=f and wri h
To show the violation of detailed balance, we use the e drop the subscript ohsincef, =fg=" and write out the

: g R .
single sequential scattering example of SABEG.A 1) in a expressions f(_)',Aolyl’ IGOLl’ anq IGll,l' The expr.essmns
single band model and start with the current expression givefie€ded for writing dowr, are, in full matrix notation,

by Eq. (45).

2e . Ao=GgH(I'®+T)Gg, (B2)
Jo(B)= 72 2 T14(K)

where T =i(oF—07)=D®A,, and A;=GFT'BG}. Writ-

H < <
X[fLAol,l(k)+'(Gol,l(k)+Gll,1(k))]' (BD) ing out the indices of EqB2) results in

Aoy (K)=TZ,(I G5, (I +TR (k|GG (K)[*+ 2 [G5, (K22 Dj(kk')(IF (k)G (k)2
, , , 2 |
+IRn(KDIGE (K)[?). (B3)

Writing out the indices of Eq(85), the equilibrium expression fde1=i(G§1 o+ Gl<l ) is

1G4k =17 IG5, (I +TRN(KICS, (K2~ 2 G, (|2 Dj(kk)(I'T4(k)IGG, (K)I?
, , S ,
+Iun(k)IGG, (K)I?). (B4)
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By inspection, one can see that for the sumand currentis conserved. The out scattered current fipis

fAL(K)+iG=(k) to equal zero for each momentuky G(Ff precisely the in scattered current inflg, and there is no

must be identical t@lR. On the other hand, if this were the further out scattering frond;. If we generalized this to mul-

case, then current would not be conserved in nontiple sequential scattering, we would see that the out scat-

equilibrium. tered current froml; would be the in scattered current into
For perfectly symmetric devices, the total equilibrium J,, etc.

current is zero. Substituting the equilibrium expressions for

Ao, , andGT; back into the current expression, EB1), We  AppENDIX C: SELF-CONSISTENT CALCULATION OF

obtain THE ELECTROSTATIC POTENTIAL
B L, The quantum mechanical calculation of the charge is
Jo(E) = fE % D;(k,K')TZ 1K) TR (k') used in an iterative self-consistent solution of the electro-
static potential which is the Hartree potential. We use a
X[|Golj(k)|2|Gi JKDI? Newton-Raphson method with a semiclassical form for the
o ' SR ' , Jacobian. We begin by discretizing Poisson’s equation
—161,,(0[Gg, (K] (BS) q d
. . — — + (=N (7)— -
For a perfectly symmetric device, whe@,;=Gyn-j+1 dze(z)dzd)(z) AlNp(2)=Na(2)=n(2)]=0 €Y
andD;=Dy_j,, the nghbnum current summed over all to obtain
transverse momenta is zero.
. 1
2. Current conservation g(‘f’i € —di(e e+ e+ q[NSi — N;i -n]
To show current conservation, we use the single sequen-
tial scattering example of Se¢VI A 1) with a single-band =0, (C2

model gnd local self-energies. We<defiﬂ|@ as the current  nere ¢, is the electrostatic potential at layef,
from G, andJ; as the current fron®; . Then from Eq(67) et =(e+e€.1)/2, € =(e&+€_1)I2, € is the dielectric

function at layeir, Ngi is the ionized donor concentration at
; [Jo,(k)=Jo,_,(K)] layeri, N, is the ionized acceptor concentration at layer
n; is electron density at layercalculated quantum mechani-

e R - - A cally from Eg.(18), andq is the magnitude of the electron
~ZA ; [o1(K)Gg (K) = Gg (k) o1 (k)] charge. We have, so far, assumed complete ionization of the
dopants, although it would not be difficult to include an ion-
_ce < Ry A ization model.
A ; G (K)(ay (k)= 07(k)) Defining F; as the left hand side of EGC2), we solve
2e _ , , E JIF" S I= —FP (C3
=~i7A 3 G002 D(kK)ALK), (B6) P !

wherei andj are the layer indices annch is the iteration
dex. The new value op is thengp™ 1= M+ 5™ 1. For
e calculation of dn;/d¢; contained in the Jacobian,

where, since the elastic scattering is local, the notattGh
represents scalar multlpllcatlon of the diagonal elements a{ﬂ

layeri andA;= —|(G1 ) is the spectral function corre- e m . . .
sponding toGR. Only two of the terms from Eq(67) are dF1o¢)", the semi-classical form is used,
present since there is no in scattering source tefm,on the an, q Er,—Ec,+a¢
right hand side of Eq(82). The divergence od; is &Tbj =0i k T T 1 kB—T (C9
Ek: [Jli(k)—Jli,l(k)] after first finding the quasi-Fermi IevEFi by solving
\ A4<EH—Eq+q¢i s
Ni=Nc7 172 ,
iE[ao GA(K)— GR(K o5 (K)] - keT

wheren; is the quantum charge calculated from Etg). In
e _ Egs.(C4) and(C5) N, is the effective conduction band den-
TN ; [(G{(k)—GE(k)ag (K)] sity of states,7; is the Fermi-Dirac integral of order, and
E, is the energy of the conduction band edge at lay@ot
e <t including the electrostatic potentid! The quasi-Fermi lev-
=i hA ; Al(k)% D(k,k")Gg (k') . (B7) els at the boundaries are fixed by the applied potential, and
the electrostatic potential at the boundaries is fixed with re-
Again, only two terms are present since there is no out scaspect to the quasi-Fermi levels to ensure charge neutrality.
tering term, o, on the left side of Eq.(81). Since The semiclassical Jacobian has worked well leading to a
D(k,k’)=D(k’,k), the sum of Eqs(B6) and (B7) is zero  converged quantum self-consistent solutié®,=0, in ap-
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proximately three to ten iterations. One of the reasons that #w. R. Frensley, irHeterostructures and Quantum Deviceslited by N.

has worked so well is that our boundary conditions fill the

low notch states in the emitter lead in RTD simulations. This,,
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